16 research outputs found

    Register: Language Users’ Knowledge of Situational-Functional Variation

    Get PDF
    The Collaborative Research Center 1412 “Register: Language Users’ Knowledge of Situational-Functional Variation” (CRC 1412) investigates the role of register in language, focusing in particular on what constitutes a language user’s register knowledge and which situational-functional factors determine a user’s choices. The following paper is an extract from the frame text of the proposal for the CRC 1412, which was submitted to the Deutsche Forschungsgemeinschaft in 2019, followed by a successful onsite evaluation that took place in 2019. The CRC 1412 then started its work on January 1, 2020. The theoretical part of the frame text gives an extensive overview of the theoretical and empirical perspectives on register knowledge from the viewpoint of 2019. Due to the high collaborative effort of all PIs involved, the frame text is unique in its scope on register research, encompassing register-relevant aspects from variationist approaches, psycholinguistics, grammatical theory, acquisition theory, historical linguistics, phonology, phonetics, typology, corpus linguistics, and computational linguistics, as well as qualitative and quantitative modeling. Although our positions and hypotheses since its submission have developed further, the frame text is still a vital resource as a compilation of state-of-the-art register research and a documentation of the start of the CRC 1412. The theoretical part without administrative components therefore presents an ideal starter publication to kick off the CRC’s publication series REALIS. For an overview of the projects and more information on the CRC, see https://sfb1412.hu-berlin.de/

    The BDNFVal66Met SNP modulates the association between beta-amyloid and hippocampal disconnection in Alzheimer’s disease

    Get PDF
    In Alzheimer’s disease (AD), a single-nucleotide polymorphism in the gene encoding brain-derived neurotrophic factor (BDNFVal66Met) is associated with worse impact of primary AD pathology (beta-amyloid, Aβ) on neurodegeneration and cognitive decline, rendering BDNFVal66Met an important modulating factor of cognitive impairment in AD. However, the effect of BDNFVal66Met on functional networks that may underlie cognitive impairment in AD is poorly understood. Using a cross-validation approach, we first explored in subjects with autosomal dominant AD (ADAD) from the Dominantly Inherited Alzheimer Network (DIAN) the effect of BDNFVal66Met on resting-state fMRI assessed functional networks. In seed-based connectivity analysis of six major large-scale networks, we found a stronger decrease of hippocampus (seed) to medial-frontal connectivity in the BDNFVal66Met carriers compared to BDNFVal homozogytes. BDNFVal66Met was not associated with connectivity in any other networks. Next, we tested whether the finding of more pronounced decrease in hippocampal-medial-frontal connectivity in BDNFVal66Met could be also found in elderly subjects with sporadically occurring Aβ, including a group with subjective cognitive decline (N = 149, FACEHBI study) and a group ranging from preclinical to AD dementia (N = 114, DELCODE study). In both of these independently recruited groups, BDNFVal66Met was associated with a stronger effect of more abnormal Aβ-levels (assessed by biofluid-assay or amyloid-PET) on hippocampal-medial-frontal connectivity decreases, controlled for hippocampus volume and other confounds. Lower hippocampal-medial-frontal connectivity was associated with lower global cognitive performance in the DIAN and DELCODE studies. Together these results suggest that BDNFVal66Met is selectively associated with a higher vulnerability of hippocampus-frontal connectivity to primary AD pathology, resulting in greater AD-related cognitive impairment

    Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer's disease

    Get PDF
    Patients with Alzheimer's disease vary in their ability to sustain cognitive abilities in the presence of brain pathology. A major open question is which brain mechanisms may support higher reserve capacity, i.e. relatively high cognitive performance at a given level of Alzheimer's pathology. Higher functional MRI-assessed functional connectivity of a hub in the left frontal cortex is a core candidate brain mechanism underlying reserve as it is associated with education (i.e. a protective factor often associated with higher reserve) and attenuated cognitive impairment in prodromal Alzheimer's disease. However, no study has yet assessed whether such hub connectivity of the left frontal cortex supports reserve throughout the evolution of pathological brain changes in Alzheimer's disease, including the presymptomatic stage when cognitive decline is subtle. To address this research gap, we obtained cross-sectional resting state functional MRI in 74 participants with autosomal dominant Alzheimer's disease, 55 controls from the Dominantly Inherited Alzheimer's Network and 75 amyloid-positive elderly participants, as well as 41 amyloid-negative cognitively normal elderly subjects from the German Center of Neurodegenerative Diseases multicentre study on biomarkers in sporadic Alzheimer's disease. For each participant, global left frontal cortex connectivity was computed as the average resting state functional connectivity between the left frontal cortex (seed) and each voxel in the grey matter. As a marker of disease stage, we applied estimated years from symptom onset in autosomal dominantly inherited Alzheimer's disease and cerebrospinal fluid tau levels in sporadic Alzheimer's disease cases. In both autosomal dominant and sporadic Alzheimer's disease patients, higher levels of left frontal cortex connectivity were correlated with greater education. For autosomal dominant Alzheimer's disease, a significant left frontal cortex connectivity × estimated years of onset interaction was found, indicating slower decline of memory and global cognition at higher levels of connectivity. Similarly, in sporadic amyloid-positive elderly subjects, the effect of tau on cognition was attenuated at higher levels of left frontal cortex connectivity. Polynomial regression analysis showed that the trajectory of cognitive decline was shifted towards a later stage of Alzheimer's disease in patients with higher levels of left frontal cortex connectivity. Together, our findings suggest that higher resilience against the development of cognitive impairment throughout the early stages of Alzheimer's disease is at least partially attributable to higher left frontal cortex-hub connectivity

    Arterial hypertension and β-amyloid accumulation have spatially overlapping effects on posterior white matter hyperintensity volume: a cross-sectional study

    Get PDF
    Abstract Background White matter hyperintensities (WMH) in subjects across the Alzheimer’s disease (AD) spectrum with minimal vascular pathology suggests that amyloid pathology—not just arterial hypertension—impacts WMH, which in turn adversely influences cognition. Here we seek to determine the effect of both hypertension and Aβ positivity on WMH, and their impact on cognition. Methods We analysed data from subjects with a low vascular profile and normal cognition (NC), subjective cognitive decline (SCD), and amnestic mild cognitive impairment (MCI) enrolled in the ongoing observational multicentre DZNE Longitudinal Cognitive Impairment and Dementia Study (n = 375, median age 70.0 [IQR 66.0, 74.4] years; 178 female; NC/SCD/MCI 127/162/86). All subjects underwent a rich neuropsychological assessment. We focused on baseline memory and executive function—derived from multiple neuropsychological tests using confirmatory factor analysis—, baseline preclinical Alzheimer’s cognitive composite 5 (PACC5) scores, and changes in PACC5 scores over the course of three years (ΔPACC5). Results Subjects with hypertension or Aβ positivity presented the largest WMH volumes (p FDR  < 0.05), with spatial overlap in the frontal (hypertension: 0.42 ± 0.17; Aβ: 0.46 ± 0.18), occipital (hypertension: 0.50 ± 0.16; Aβ: 0.50 ± 0.16), parietal lobes (hypertension: 0.57 ± 0.18; Aβ: 0.56 ± 0.20), corona radiata (hypertension: 0.45 ± 0.17; Aβ: 0.40 ± 0.13), optic radiation (hypertension: 0.39 ± 0.18; Aβ: 0.74 ± 0.19), and splenium of the corpus callosum (hypertension: 0.36 ± 0.12; Aβ: 0.28 ± 0.12). Elevated global and regional WMH volumes coincided with worse cognitive performance at baseline and over 3 years (p FDR  < 0.05). Aβ positivity was negatively associated with cognitive performance (direct effect—memory: − 0.33 ± 0.08, p FDR  < 0.001; executive: − 0.21 ± 0.08, p FDR  < 0.001; PACC5: − 0.29 ± 0.09, p FDR  = 0.006; ΔPACC5: − 0.34 ± 0.04, p FDR  < 0.05). Splenial WMH mediated the relationship between hypertension and cognitive performance (indirect-only effect—memory: − 0.05 ± 0.02, p FDR  = 0.029; executive: − 0.04 ± 0.02, p FDR  = 0.067; PACC5: − 0.05 ± 0.02, p FDR  = 0.030; ΔPACC5: − 0.09 ± 0.03, p FDR  = 0.043) and WMH in the optic radiation partially mediated that between Aβ positivity and memory (indirect effect—memory: − 0.05 ± 0.02, p FDR  = 0.029). Conclusions Posterior white matter is susceptible to hypertension and Aβ accumulation. Posterior WMH mediate the association between these pathologies and cognitive dysfunction, making them a promising target to tackle the downstream damage related to the potentially interacting and potentiating effects of the two pathologies. Trial registration German Clinical Trials Register (DRKS00007966, 04/05/2015)

    Serum IL-6, sAXL, and YKL-40 as systemic correlates of reduced brain structure and function in Alzheimer’s disease: results from the DELCODE study

    Get PDF
    Abstract Background Neuroinflammation constitutes a pathological hallmark of Alzheimer’s disease (AD). Still, it remains unresolved if peripheral inflammatory markers can be utilized for research purposes similar to blood-based beta-amyloid and neurodegeneration measures. We investigated experimental inflammation markers in serum and analyzed interrelations towards AD pathology features in a cohort with a focus on at-risk stages of AD. Methods Data of 74 healthy controls (HC), 99 subjective cognitive decline (SCD), 75 mild cognitive impairment (MCI), 23 AD relatives, and 38 AD subjects were obtained from the DELCODE cohort. A panel of 20 serum biomarkers was determined using immunoassays. Analyses were adjusted for age, sex, APOE status, and body mass index and included correlations between serum and CSF marker levels and AD biomarker levels. Group-wise comparisons were based on screening diagnosis and routine AD biomarker-based schematics. Structural imaging data were combined into composite scores representing Braak stage regions and related to serum biomarker levels. The Preclinical Alzheimer’s Cognitive Composite (PACC5) score was used to test for associations between the biomarkers and cognitive performance. Results Each experimental marker displayed an individual profile of interrelations to AD biomarkers, imaging, or cognition features. Serum-soluble AXL (sAXL), IL-6, and YKL-40 showed the most striking associations. Soluble AXL was significantly elevated in AD subjects with pathological CSF beta-amyloid/tau profile and negatively related to structural imaging and cognitive function. Serum IL-6 was negatively correlated to structural measures of Braak regions, without associations to corresponding IL-6 CSF levels or other AD features. Serum YKL-40 correlated most consistently to CSF AD biomarker profiles and showed the strongest negative relations to structure, but none to cognitive outcomes. Conclusions Serum sAXL, IL-6, and YKL-40 relate to different AD features, including the degree of neuropathology and cognitive functioning. This may suggest that peripheral blood signatures correspond to specific stages of the disease. As serum markers did not reflect the corresponding CSF protein levels, our data highlight the need to interpret serum inflammatory markers depending on the respective protein’s specific biology and cellular origin. These marker-specific differences will have to be considered to further define and interpret blood-based inflammatory profiles for AD research

    Subjective cognitive decline and stage 2 of Alzheimer disease in patients from memory centers

    No full text
    Introduction It is uncertain whether subjective cognitive decline (SCD) in individuals who seek medical help serves the identification of the initial symptomatic stage 2 of the Alzheimer's disease (AD) continuum. Methods Cross-sectional and longitudinal data from the multicenter, memory clinic-based DELCODE study. Results The SCD group showed slightly worse cognition as well as more subtle functional and behavioral symptoms than the control group (CO). SCD-A+ cases (39.3% of all SCD) showed greater hippocampal atrophy, lower cognitive and functional performance, and more behavioral symptoms than CO-A+. Amyloid concentration in the CSF had a greater effect on longitudinal cognitive decline in SCD than in the CO group. Discussion Our data suggests that SCD serves the identification of stage 2 of the AD continuum and that stage 2, operationalized as SCD-A+, is associated with subtle, but extended impact of AD pathology in terms of neurodegeneration, symptoms and clinical progression
    corecore